If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x-121=0
a = 1; b = 7; c = -121;
Δ = b2-4ac
Δ = 72-4·1·(-121)
Δ = 533
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{533}}{2*1}=\frac{-7-\sqrt{533}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{533}}{2*1}=\frac{-7+\sqrt{533}}{2} $
| 73-x=5.8 | | 6x-x+3=12 | | n+n+66=180 | | 2(8x-5)=6 | | 3n=(5n+11)/4 | | -20=-7w | | 10=x/2=7 | | -35-12x=25 | | 12x-21=14x+24 | | 7(2b-6)=70 | | 9x-2x-4=10 | | 308=22x | | 12x-x+4=-29 | | 7x-12x-1=9 | | v=1/3(3.14*36)11 | | 2x-4x+5=5x+5-3-2x | | -v/47=-49 | | -0.005x^2+4.5x-6.5=0 | | -3x-9-3x=18 | | 19^1.4x-6.6=3 | | 3(5+3x)=-3 | | 16y+4-12y=8 | | 8t-7*3t+5=0 | | 3x+9+8x=-13 | | 0.005x^2+4.5x-6.5=0 | | (3x-2)^2-4=9x-6 | | 1/2(8x-4)=16-32x | | 32/5=x+101/10 | | 6x5/2=0 | | 0.5(13k-7)=0.75(6k+2) | | 180=72+9x+(6x-12) | | 16t²-96t-100=0 |